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We consider the one-dimensional motion of a particle randomly accelerated by Gaussian white noise on the
line segment 0,x,1. The reflections of the particle from the boundaries atx=0 and 1 are inelastic, with
velocities just after and before reflection related byv f =−rvi. Cornell et al. have predicted that the particle
undergoes inelastic collapse forr , rc=e−p/Î3=0.163, coming to rest at the boundary after an infinite number
of collisions in a finite time and remaining there. This has been questioned by Florencioet al.and Anton on the
basis of simulations. We have solved the Fokker-Planck equation satisfied by the equilibrium distribution
function Psx,vd with a combination of exact analytical and numerical methods. Throughout the interval
0, r ,1, Psx,vd remains extended, as opposed to collapsed. There is no transition in whichPsx,vd collapses
onto the boundaries. However, forr , rc the equilibrium boundary collision rate is infinite, as predicted by
Cornell et al., and all momentsuvuq, q.0 of the velocity just after reflection from the boundary vanish.
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I. INTRODUCTION

Consider a particle randomly accelerated on the line seg-
ment 0,x,1 according to

d2x

dt2
= hstd, khstdhst8dl = 2dst − t8d, s1d

wherehstd is uncorrelated white noise with zero mean. If the
collisions of the particle with the boundaries atx=0 and 1
are elastic, the mean-square velocity increases according to

kvstd2l = kvs0d2l + 2t, s2d

just as in the absence of boundaries.
In this paper, we assume that the boundary collisions of

the randomly accelerated particle areinelastic. The velocities
just after and before reflection satisfy

v f = − rvi , s3d

wherer is the coefficient of restitution. This simple model is
of interest in connection with the statistics of driven granular
media, where particles tend to cluster, due to inelastic colli-
sions, even though no attractive forces are present. The
model was studied by Cornell, Swift, and Bray(CSB) [1],
who argued that the particle undergoes “inelastic collapse,”
i.e., makes an infinite number of collisions in a finite time,
comes to rest at the boundary, and remains there, if the co-
efficient of restitutionr is less than the critical value

rc = e−p/Î3 = 0.163¯ . s4d

The prediction of inelastic collapse was questioned by
Florencioet al. [2], who carried out simulations and found
that the particle did not adhere to the boundary for anyr.
Anton [3] reported that his simulations are consistent with an
infinite collision rate forr , rc but also incompatible with
localization of the particle at the boundary.

According to Eqs.(2) and (3), the kinetic energy of the
randomly accelerated particle increases in between boundary
collisions but decreases, forr ,1, in the collisions. Eventu-
ally an equilibrium is reached. Burkhardt, Franklin, and

Gawronski(BFG) [4] analyzed the equilibrium distribution
Psx,vd for the position and velocity of the particle for
rc, r ,1. This function satisfies the steady-state Fokker-
Planck equation

Sv
]

] x
−

]2

] v2DPsx,vd = 0, s5d

with the boundary conditions

Psx,vd = Ps1 − x,− vd, s6d

Ps0,−vd = r2Ps0,rvd, v . 0, s7d

corresponding to reflection symmetry and conservation of
probability, respectively. In particular, the second boundary
condition ensures that the incident and reflected probability
currents at the boundary have equal magnitude

I =E
0

`

dv vPs0,−vd =E
0

`

dv vPs0,vd. s8d

Making use of an exact Green’s-function solution of Eqs.
(5)–(7), BFG found that the boundary collision rateI, defined
by Eq. (8), diverges asr approachesrc from above and that
Psx,vd is extended, as opposed to collapsed, atr =rc. In this
approach,Psx,vd is obtained as the difference of two inte-
grals, both of which diverge forr ø rc. This was noted by
BFG, who, however, incorrectly concluded that the solution
to the Fokker-Planck equation breaks down forr , rc.

In this paper, the calculation ofPsx,vd is extended to
r , rc. In Sec. II, the approach of BFG is reviewed. The
divergences, forr ø rc, of the two integrals which determine
Psx,vd are shown to cancel, leaving a finite result. Through-
out the entire interval 0, r ,1, Psx,vd varies smoothly and
analytically with r. There is no transition in whichPsx,vd
collapses onto the boundaries.
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In Sec. III, the equilibrium boundary collision rate is cal-
culated from the results of Sec. II. The collision rate is finite
for r . rc and infinite forr ø rc, as predicted by CSB. All the
equilibrium momentsuvuq, q.0 of the velocity just after
striking the boundary[5] vanish forr ø rc.

Our conclusions are summarized in Sec. IV, and some
earlier results on inelastic collapse are reexamined.

II. SOLUTION OF THE FOKKER-PLANCK EQUATION

We begin with a brief review of the approach[4] of BFG.
Generalizing earlier work of Masoliver and Porrà[6], they
showed that the Fokker-Planck equation(5), with reflection
symmetry(6), has the exact solution

Psx,vd =E
0

`

du u Gsx,v,udPs0,ud s9d

for v.0 in terms of the Green’s function

Gsx,v,ud =
v1/2u1/2

3x
e−sv3+u3d/9xI−1/3S2v3/2u3/2

9x
D

−
1

31/3GS2

3
DE0

x

dy
e−v3/9sx−yd

sx − yd2/3

3fRsy,ud − Rs1 − y,udg, s10d

where

Rsy,ud =
1

35/6GS1

3
DGS5

6
D

u1/2e−u3/9y

y7/6s1 − yd1/6

31F1X−
1

6
,
5

6
,
u3s1 − yd

9y
C , s11d

and1F1sa,b,zd is a standard confluent hypergeometric func-
tion [7].

To calculatePsx,vd from Eq.(9), one must first determine
the unknown functionPs0,ud on the right-hand side. Setting
x=1 in Eqs.(9)–(11) and usingr2Ps0,rvd=Ps1,vd, as fol-
lows from Eqs.(6) and (7), leads to the integral equation

r2Ps0,rvd =E
0

`

du u Gs1,v,udPs0,ud s12d

for Ps0,vd, where

Gs1,v,ud =
1

6p
v1/2u1/2e−sv3+u3d/9

3F 9

v3 + u3 + 61F2S1;
5

6
,
7

6
;
v3u3

81
DG , s13d

and 1F2sa;b,c;zd is a generalized hypergeometric function
[7]. The quantityvGs1,v ,ud is of interest in its own right. As
discussed in the Appendix, it generalizes McKean’s result[8]
for the velocity distribution at first return to the boundary
from the half–linex.0 to the line segment 0,x,1.

BFG showed[4] that the asymptotic form ofPs0,vd for
small and largev is determined by the first and second terms,
respectively, of the kernelGs1,v ,ud in Eqs. (12) and (13)
and is given by

Ps0,vd , Hv−bsrd,

e−v3/vchsrd3,

v → 0,

v → `,
s14d

where

r = F2 sinS2b + 1

6
pDG1/sb−2d

, s15d

vchsrd3 =
9r3

1 − r3 . s16d

Note the non-Maxwellian velocity distribution. Asr de-
creases, the boundary collisions become more inelastic, and
the probability of finding the particle near the boundary with
a small velocity increases. This is seen in the monotonic
increase of the exponentbsrd from 0 to 5

2, as r decreases
from 1 to 0. The characteristic velocityvchsrd also decreases
with decreasingr.

The asymptotic forms(14)–(16) are smooth analytic func-
tions of r throughout the interval 0, r ,1. There is no sin-
gular behavior atrc. In particular, on expanding the right side
of Eq. (15) aboutb=2, one sees thatbsrd is a nonsingular
function ofr, with bsrcd=2. To connect the asymptotic forms
(14)–(16) of Ps0,vd for small and largev, we have solved
the integral equation(12) by numerical iteration, as in[4]. As
noted by BFG[4], the integral equation appears to have a
well-defined solution for 0, r ,1, i.e., 0,b,5/2, with no
special behavior atrc. Numerical results for several values of
r above and belowrc=0.163 are shown in Fig. 1. The slopes
of the curves, for smallv, depend onr in accordance with the
asymptotic form(14), (15). There is no qualitative difference
above and belowrc. Presumably,Ps0,vd, like its exact

FIG. 1. Double-logarithmic plot(base 10) of Ps0,vd for r
=0.01 (dotted curve), r =0.1 (solid curve), r =0.2 (dashed curve),
andr =0.5 (dot-dashed curve). The curves are normalized according
to Eq. (20).
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asymptotic forms(14)–(16) for small and largev, is an ana-
lytic function of r throughout the interval 0, r ,1.

Once Ps0,vd has been determined,Psx,vd may be ob-
tained by integration. According to Eqs.(9)–(11), Psx,vd is
the sum of two integrals overPs0,ud, corresponding to the
two terms in the Green’s functionGsx,v ,ud in Eq. (10). Both
integrals diverge at the lower limit forr ø rc, as follows from
the asymptotic form(14), (15) of Ps0,ud for small u, with
bsrd.2 for r , rc. This was noted by BFG[4], who, how-
ever, incorrectly concluded that the solution to the Fokker–
Planck equation breaks down forr , rc. The divergences
cancel, leaving a finite result, as may be seen by integrating
with a low-u cutoff and sending the cutoff to zero after add-
ing the two integrals. No cutoff is needed if the two inte-
grands are added before integrating overu. From Eq.(10) it
is straightforward to show thatGsx,v ,ud,u1/2 in the small-
u limit [9]. Thus the integral in Eq.(9) behaves as
e0du u3/2−b for small u. Since 0,bsrd,

5
2 for 0, r ,1,

there are no convergence problems at the lower limit of the
integral. Throughout the interval 0, r ,1, Psx,vd is a
smooth well-defined function ofr, presumably analytic inr,
and does not collapse onto the boundaries atx=0 andx=1.

We have also considered the probability density

Psxd =E
−`

`

dv Psx,vd =E
0

`

dvfPsx,vd + Ps1 − x,vdg

s17d

for the position of the particle. From Eqs.(9)–(11) and(17),
one finds that the leading singular contribution toPsxd for
x→0 is determined by the asymptotic formPs0,vd<Av−b

for v→0 in Eq. (14) and given by

Psingsxd < Bxs1−bd/3, x → 0, s18d

B =
2p

3s4b+5d/6

GSb − 1

3
D

sinS2b + 1

6
pDGSb

3
DGSb + 1

3
DA. s19d

For 0,b,1, i.e., 1
2 , r ,1, the leading singular contribu-

tion to Psxd=Ps1−xd in Eq. (18) vanishes asx approaches 0
or 1, and Ps0d is finite and nonzero. Forb.1 or
r ,

1
2 , Psxd diverges according to Eq.(18) asx approaches

0 or 1. Since the divergence is integrable,Psx,vd can be
normalized so that

E
−`

`

dvE
0

1

dx Psx,vd =E
0

1

dx Psxd = 1 s20d

for all 0, r ,1. Note the absence of any special behavior in
Eqs.(18) and (19) at b=2 or r =rc.

The probability densityPsxd is shown for several values
of r above and belowrc in Fig. 2. The curves were obtained
by integrating Eq.(9) over v analytically and then perform-
ing theu integration numerically, using the numerical solu-
tion for Ps0,ud in Fig. 1. Again there is no qualitative dif-
ference above and belowrc.

III. COLLISION RATE AND MOMENTS OF THE
REFLECTED VELOCITY

Unlike the distribution functionsPsx,vd andPsxd consid-
ered thus far, the equilibrium collision rateI, defined by Eq.
(8), does indeed change nonanalytically asr passes through
rc. According to the asymptotic forms(14)–(16) of Ps0,vd,
the second integral on the right of Eq.(8) converges at the
upper limit for all 0, r ,1 and at the lower limit forb,2
but not bù2. Thus the boundary collision rate is finite for
r . rc and infinite forr ø rc, in agreement with the prediction
of CSB [1].

The momentsuvuq of the velocity just after reflection from
the boundary[5] exhibit a closely related collapse transition.
Since vPs0,vddv is the reflected probability current in the
velocity rangev to v+dv,

uvuq =

E
0

`

dv vq+1Ps0,vd

E
0

`

dv vPs0,vd
, r . rc. s21d

The denominator in Eq.(21) equals the collision rateI, just
shown to be finite forr . rc and infinite for r , rc. In the
latter case, we use the regularized average

uvuq = lim
l→0

E
l

`

dv vq+1Ps0,vd

E
l

`

dv vPs0,vd
, r , rc. s22d

From Eqs.(21), (22), and the asymptotic form(14), (15) of
Ps0,vd for small v, one sees that all the momentsuvuq with
q.0 collapse atr =rc. For r . rc they are finite and nonzero,
and for r , rc they vanish.

CSB [1] analyzed the case of a randomly accelerated par-
ticle, initially at x=0 with v0.0, moving on the half-line
x.0 with inelastic collisions atx=0. DefiningQnsv ,v0ddv

FIG. 2. Double-logarithmic plot(base 10) of Psxd for several
values ofr. The curves are normalized according to Eq.(20).
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as the probability of a velocity just after thenth reflection
betweenv andv+dv, normalized so that

E
0

`

dv Qnsv,v0d = 1, s23d

they calculatedQnsv ,v0d and the moments

uvnuq =E
0

`

dv vqQnsv,v0d s24d

exactly. In the limitn→`, the qth moment diverges, inde-
pendent ofr, for q.

1
2. For 0,q,

1
2, this same quantity

diverges forr . r*sqd and vanishes forr , r*sqd. The critical
parameterr*sqd, given by Eq.(15) with the replacementb
→q+2, decreases monotonically fromrc to 0 asq increases
from 0 to 1

2. Thus, in both the semi-infinite geometryx.0
and the finite geometry 0,x,1, certain moments of the
reflected velocity collapse asr decreases. However, since
boundary collisions are less frequent in the semi-infinite ge-
ometry, the velocity fluctuations are greater, and the collapse
is less complete. In the semi-infinite case the uncollapsed
moments are infinite, the moments withq.

1
2 do not col-

lapse, and for 0,q,
1
2 the critical parameterr*sqd is less

than rc.
For a particle confined tox,0,1 rather thanx.0, the

recurrence relation that determinesQnsv ,v0d is given by

rQn+1srv,v0d =E
0

`

du vGs1,v,udQnsu,v0d, s25d

Q0sv,v0d = dsv − v0d, s26d

as shown in the Appendix. The kernelGs1,v ,ud is the same
as in Eqs.(12) and (13). Due to the property(A2) (see the
Appendix) of the kernel, the recurrence relation preserves the
normalization (23). In the limit n→`, Eq. (25) becomes
identical with the integral equation(12) for vPs0,vd, sug-
gesting thatQ`sv ,v0d is proportional tovPs0,vd.

This proportionality could have been anticipated. In the
limit n→`, Qnsv ,v0d is expected to approach the equilib-
rium distribution Qequilsvd, and Qequilsvd proportional to
vPs0,vd follows from the interpretation ofvPs0,vddv as the
reflected probability current, in equilibrium, in the rangev to
v+dv.

The proportionality constant is fixed by the normalization
(23). This leads to

Qequilsvd =
vPs0,vd

E
0

`

dv vPs0,vd
, r . rc. s27d

For r , rc, the denominator in Eq.(27), which equals the
collision rate I, diverges. Regularizing as in Eq.(22), we
replace the right side of Eq.(27) by liml→0Qsv ,ld, where

Qsv,ld =
usv − ldvPs0,vd

E
l

`

dvvPs0,vd
, s28d

and usxd denotes the standard step function. Since
e0

` dv Qsv ,ld=1, and sinceQsv ,ld vanishes in the limitl
→0 except atv=0+, where it diverges,

Qequilsvd = lim
l→0

Qsv,ld = dsvd, r , rc. s29d

The distribution functionQequilsvd collapses from Eq.(27) to
(29) as r is lowered throughrc. The vanishing of the mo-
mentsuvuq=0, q.0 for r , rc is consistent with the collapsed
form (29).

ThatQequilsvd in Eq. (27) is indeed a stationary solution of
the recurrence relation(25) follows directly from the integral
equation(12) satisfied byPs0,vd. That thed function (29) is
a stationary solution for anyr may be shown by substituting
dsu−ed, e.0 on the right side of Eq.(25), integrating over
u, and then taking the limite→0.

IV. CLOSING REMARKS

A. Is there inelastic collapse?

The paper of CSB[1] on inelastic collapse is almost en-
tirely concerned with establishing that on the half-linex.0
(i) the particle makes an infinite sequence of boundary col-
lisions in a finite time forr , rc, and (ii ) in the limit n→`
the reflected velocity distributionQnsv ,v0d and certain mo-
ments of the reflected velocity collapse asr is lowered. Our
results for a particle in equilibrium on the finite line 0,x,1
are quite compatible with(i) and (ii ). We question only the
statement, below Eq.(19) of [1], that after undergoing an
infinite sequence of collisions the particleremains at rest on
the boundary.

Unlike the central quantityQnsv ,v0d in the work of CSB,
the solutionPsx,vd of the Fokker-Planck equations(5)–(7)
provides information on both the position and velocity of the
particle in equilibrium. The solutionPsx,vd that we have
obtained does not collapse onto the boundariesx=0 andx
=1 as r is lowered between 1 and 0. However, forr , rc,
Ps0,vd diverges more strongly thanv−2 in the limit v→0,
and this impliesI =`, uvuq=0, q.0, andQequilsvd=dsvd, via
Eqs.(8), (22), and(29). There is a collapse transition in the
distribution of reflected velocitiesQequilsvd, but it does not
involve localization of the particle at the boundaries.

Why is Qequilsvd=dsvd not a sufficient condition for in-
elastic collapse? Since the velocityv=0 on reflection from
the boundary is overwhelmingly favored, does not the par-
ticle remain at the boundary? In our opinion, the relevant
quantity in the question of localization is notQequilsvd but the
probability per unit timevPs0,vddv for leaving the boundary
with a velocity betweenv andv+dv, where

vPs0,vd = IQequilsvd, s30d

as in Eqs.(27) and(28). If vPs0,vd.0 for v.0, the particle
does not remain at the boundary.
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For r , rc, the collision rateI is infinite, and forv.0 the
productIQequilsvd= Idsvd on the right side of Eq.(30) is in-
determinate. Whether or notvPs0,vd vanishes forv.0 is
unclear from Eq.(30). We have calculatedPs0,vd for r , rc

by solving the Fokker-Planck equation. The result, as de-
scribed above, is a smooth function ofv with the asymptotic
forms (14)–(16). The quantityvPs0,vd does not vanish for
v.0, although it does indeed implyQequilsvd=dsvd. Thus,
we find that inelastic collisions do not localize the particle at
the boundaries.

Below we comment on two earlier results in view of these
conclusions.

B. Collision rate in simulations

In computer simulations[2–4] with a discrete time step
Dt, the boundary collision rateI, which can never exceed one
collision per time step, is necessarily finite. In the algorithm
of [3,4], the root-mean-square velocity change is given by
Dv=s2Dtd1/2. In the limit Dt→0, the discrete dynamics ap-
proaches the continuum dynamics of Eq.(1), andI diverges
for r ø rc. Anton [3] has found that the collision rate in his
simulations scales asI ,sDtds2−bd/2, Dt→0 for r , rc and of-
fered a dynamical explanation. We note that this scaling re-
lation follows very simply from our results for the equilib-
rium distribution functionPsx,vd. For velocitiesuv u &Dv,
the simulation results are expected to deviate from the
asymptotic formPs0,vd,v−bsrd in Eqs.(14) and (15). Thus
the boundary collision rate(8) in the simulations scales as

I , E
Dv

`

dv v1−b , sDvd2−b , sDtds2−bd/2, Dt → 0.

s31d

C. Persistence exponent forr , rc

Burkhardt[10] and De Smedtet al. [11] have considered
the probabilityQsx0,v0,td that a randomly accelerated par-
ticle with initial position and velocityx0,v0, confined to the
half-line x.0 and reflected inelastically atx=0, has not yet
undergone inelastic collapseafter a timet. They predicted
Qsx0,v0,td=1 for r . rc, and forr , rc the power-law decay

Qsx0,v0;td , ts2−bd/2, t → `, s32d

where the exponentb is the same as in Eqs.(14), (15), and
(31). In view of our conclusions that the particle makes an
infinite number of collisions in a finite time but does not

remain at the boundary,Qsx0,v0,td in Eq. (32) should be
interpreted as the probability that after a timet the randomly
accelerated particle has not yet made an infinite number of
boundary collisions. The derivations of Eq.(32) in [10,11]
are compatible with this interpretation, and it is also sup-
ported by simulations[3,12,13].
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APPENDIX A: VELOCITY DISTRIBUTION ON ARRIVAL
AT THE BOUNDARY

The probability that a randomly accelerated particle with
initial positionx=0 and initial velocityu.0, moving on the
half-line x.0, arrives with speed betweenv andv+dv on its
first return tox=0 is given byvG0sv ,uddv, where

G0sv,ud =
3

2p

v1/2u1/2

v3 + u3 . sA1d

This result, due to McKean[8], was also obtained indepen-
dently by CSB[1].

The quantityGs1,v ,ud in Eq. (13), derived by BFG[4],
extends this result to the finite interval 0,x,1. The prob-
ability that a randomly accelerated particle which leavesx
=0 with velocity u.0 has speed betweenv and v+dv the
next time it reaches either boundary is given by
vGs1,v ,uddv, where the first and second terms on the right
side of Eq.(13) correspond to arrival atx=0 andx=1, re-
spectively. LikeG0sv ,ud in Eq. (A1), Gs1,v ,ud satisfies the
normalization condition

E
0

`

dv vGs1,v,ud = 1. sA2d

Integral equation(12) for Ps0,vd follows directly from
the interpretation ofGs1,v ,ud in the preceding paragraph
and the stationarity, in equilibrium, of the reflected current
vPs0,vddv betweenv andv+dv. Another consequence is the
recurrence relation(25) for the probability distribution
Qnsv ,v0d of the speed with which the particle rebounds after
the nth boundary collision. Solving Eqs.(25) and (26) with
G0sv ,ud in Eq. (A1) in place ofGs1,v ,ud, CSB [1] calcu-
latedQnsv ,v0d exactly for motion on the half-linex.0.
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