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Equilibrium of a confined, randomly accelerated, inelastic particle: Is there inelastic collapse?
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We consider the one-dimensional motion of a particle randomly accelerated by Gaussian white noise on the
line segment &xx<1. The reflections of the particle from the boundariexab and 1 are inelastic, with
velocities just after and before reflection related gy —rv;. Cornellet al. have predicted that the particle
undergoes inelastic collapse for r,=e ™3=0.163, coming to rest at the boundary after an infinite number
of collisions in a finite time and remaining there. This has been questioned by Floetratiand Anton on the
basis of simulations. We have solved the Fokker-Planck equation satisfied by the equilibrium distribution
function P(x,v) with a combination of exact analytical and numerical methods. Throughout the interval
0<r<1, P(x,v) remains extended, as opposed to collapsed. There is no transition in R{xigh collapses
onto the boundaries. However, forxr. the equilibrium boundary collision rate is infinite, as predicted by
Cornellet al,, and all momentsv|9, g>0 of the velocity just after reflection from the boundary vanish.
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I. INTRODUCTION Gawronski(BFG) [4] analyzed the equilibrium distribution
Consider a particle randomly accelerated on the line segE’(X’v) for the p05|t!on anq yelocny of the particle for
ment 0<x< 1 according to r.<r<1. This function satisfies the steady-state Fokker-
, Planck equation
d=x

G2 =0, () =261, (1) ( ) 2

v———2>P(X,v):O, (5)
where(t) is uncorrelated white noise with zero mean. If the v

collisions of the particle with the boundaries»t0 and 1 ) N

are elastic, the mean-square velocity increases according t¥ith the boundary conditions

(1) =((0)* +2t, ) P(x,v) = P(1 -x,—v), (6)

just as in the absence of boundaries.

In this paper, we assume that the boundary collisions of
the randomly accelerated particle amelastic The velocities
just after and before reflection satisfy

P(0,-v) =r?P(0,rv), v >0, (7)

corresponding to reflection symmetry and conservation of
vi=~Tluj, (3 probability, respectively. In particular, the second boundary

wherer is the coefficient of restitution. This simple model is condition ensures that the incident and ref!ected probability
currents at the boundary have equal magnitude

of interest in connection with the statistics of driven granular
media, where particles tend to cluster, due to inelastic colli- . .
sions, even though no attractive forces are present. The _ )=

model was studied by Cornell, Swift, and Bré@SB) [1], I_f dv vP(0,~v) = fo dv vP(O.0). ®
who argued that the particle undergoes “inelastic collapse,”

i.e., makes an infinite number of collisions in a finite time, Making use of an exact Green’s-function solution of Egs.
comes to rest at the boundary, and remains there, if the c42)—(7), BFG found that the boundary collision rdtedefined

0

efficient of restitutionr is less than the critical value by Eq.(8), diverges as approaches, from above and that
e P(x,v) is extended, as opposed to collapsed,=at.. In this
re=e7°=0.163--. (4)  approachP(x,v) is obtained as the difference of two inte-

The prediction of inelastic collapse was questioned bydrals, both of which diverge for<r.. This was noted by
Florencioet al. [2], who carried out simulations and found BFG, who, however, incorrectly concluded that the solution
that the particle did not adhere to the boundary for any tO the Fokker-Planck equation breaks down rfetre.

Anton [3] reported that his simulations are consistent with an [N this paper, the calculation dP(x,v) is extended to
infinite collision rate forr <r. but also incompatible with I <fc. In Sec. Il, the approach of BFG is reviewed. The
localization of the particle at the boundary. divergences, for <r, of the two integrals which determine

According to Eqs(2) and (3), the kinetic energy of the P(x,v) are shown to cancel, leaving a finite result. Through-
randomly accelerated particle increases in between boundagpt the entire interval &r <1, P(x,v) varies smoothly and
collisions but decreases, for 1, in the collisions. Eventu- analytically withr. There is no transition in whiclP(x,v)
ally an equilibrium is reached. Burkhardt, Franklin, and collapses onto the boundaries.
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In Sec. I, the equilibrium boundary collision rate is cal- 4
culated from the results of Sec. Il. The collision rate is finite
for r>r. and infinite forr <r, as predicted by CSB. All the
equilibrium momentsv|9, q>0 of the velocity just after
striking the boundary5] vanish forr <r..

Our conclusions are summarized in Sec. IV, and some
earlier results on inelastic collapse are reexamined.

log P(0,v)

II. SOLUTION OF THE FOKKER-PLANCK EQUATION

We begin with a brief review of the approap#i of BFG.
Generalizing earlier work of Masoliver and Poij], they
showed that the Fokker-Planck equati@, with reflection

-8 L L 1

symmetry(6), has the exact solution 15 10 05 00 .0.
o log(v/v )
P(x,v):f du u Gx,v,u)P(0,u) (9
0 FIG. 1. Double-logarithmic plotbase 19 of P(0,v) for r

=0.01 (dotted curveg, r=0.1 (solid curve, r=0.2 (dashed curve

>0 ’ i
forv=>0in terms of the Green's function andr =0.5(dot-dashed curyeThe curves are normalized according

1/2, 1/2 2 3/2u3/2 to Eq.(20).
G(x,v,u) = e_(v3+u3)/9xl_1/3< . 9
v oYy BFG showed4] that the asymptotic form oP(0,v) for
f dye v small and large is determined by the first and second terms,
sl 2\ Jo (x-y)?® respectively, of the kerneB(1,v,u) in Egs.(12) and (13
T 3 and is given by
X[R(y,u) - RA-y,u)l, (10 A LR et wa
where : e e’y — oo,
1 ul/2euey where
o 35/6F< 1)F< 5) y7/5(1 - )16 (2p+1 )|
3 6 r=|2 S|r< 5 77) , (15
15 u(1l-y)
w55 ) Y s o
y ver(N?= ——. (16)

1-r
and,F,(a,b,z) is a standard confluent hypergeometric func-

tion [7]. Note the non-Maxwellian velocity distribution. As de-

To calculateP(x,v) from Eq.(9), one must first determine creases, the boundary collisions become more inelastic, and
the unknown functiorP(0,u) on the right-hand side. Setting the probability of finding the particle near the boundary with
x=1 in Egs.(9)~11) and usingr?P(0,rv)=P(1,v), as fol- @ small velocity increases. This is seen in the monotonic
lows from Eqgs.(6) and(7), leads to the integral equation  increase of the exponer(r) from 0 to 3, asr decreases

. from 1 to 0. The characteristic velocity,(r) also decreases

r2P(0,r :f du u Q1,0,u)P(0,u 12 with decreasing.
(O.rv) 0 Ao, WPO.Y) (12 The asymptotic formgl4)—16) are smooth analytic func-
tions of r throughout the interval €r<1. There is no sin-

for P(0,v), where gular behavior at.. In particular, on expanding the right side
1 - of Eq. (15) aboutB=2, one sees thas(r) is a nonsingular
G(1,v,u)= 6—vl’zu1/2e‘(” /e function ofr, with 8(r.)=2. To connect the asymptotic forms
aa

(14)—<(16) of P(0,v) for small and largey, we have solved
9 57 v the integral equatiofi2) by numerical iteration, as if#]. As
ol 6:F> 1@&@ . (13 noted by BFG[4], the integral equation appears to have a
well-defined solution for &<r <1, i.e., 0< 8<5/2, with no
and ,F,(a;b,c;2) is a generalized hypergeometric function special behavior at.. Numerical results for several values of
[7]. The quantityG(1,v,u) is of interest in its own right. As  r above and below,=0.163 are shown in Fig. 1. The slopes
discussed in the Appendix, it generalizes McKean'’s rg8lilt  of the curves, for small, depend om in accordance with the
for the velocity distribution at first return to the boundary asymptotic form(14), (15). There is no qualitative difference
from the half-linex>0 to the line segment@x<1. above and belowr.. Presumably,P(0,v), like its exact
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asymptotic formg14)—(16) for small and large, is an ana-
lytic function of r throughout the interval €r <1.

Once P(0,v) has been determined?(x,v) may be ob-
tained by integration. According to Eg®)—(11), P(x,v) is
the sum of two integrals oveP(0,u), corresponding to the
two terms in the Green'’s functidB(x,v,u) in Eq.(10). Both
integrals diverge at the lower limit faor<r, as follows from
the asymptotic form(14), (15) of P(0,u) for small u, with
B(r)>2 for r<r.. This was noted by BF®4], who, how-

ever, incorrectly concluded that the solution to the Fokker—

Planck equation breaks down for<r.. The divergences

cancel, leaving a finite result, as may be seen by integrating

with a low-u cutoff and sending the cutoff to zero after add-
ing the two integrals. No cutoff is needed if the two inte-
grands are added before integrating oneFrom Eq.(10) it

is straightforward to show thas(x,v,u) ~u? in the small-

u limit [9]. Thus the integral in EQ.9) behaves as
Jodu 2 for small u. Since 0<B(r)<32 for 0<r<1,

PHYSICAL REVIEW E 70, 026105(2004)

25

20 Lr=.0

=1
1.5F

=2

1.0

log P(x)

0.5 [r=.5
=8

0.0

0.5 y y

6 -5 -3

log x

2 -l

FIG. 2. Double-logarithmic plotbase 10 of P(x) for several
values ofr. The curves are normalized according to E2D).

there are no convergence problems at the lower limit of the

integral. Throughout the interval Or<1, P(x,v) is a

smooth well-defined function af, presumably analytic im,

and does not collapse onto the boundaries=s@ andx=1.
We have also considered the probability density

P(x):f dv P(x,v) =

f” dv[P(x,v) + P(1 —x,v)]
0

(17)

for the position of the particle. From Eg®)—11) and(17),
one finds that the leading singular contributionR(x) for
x—0 is determined by the asymptotic for®(0,v) ~Av~#
for v—0 in Eqg.(14) and given by

Pangd) = BX'™P, - x—0, (18)
21 3
B= A, (19
2B+1 B\.(B+1

3(4B+5)/6

sl 2522 )r(8)r(£37)
For 0<pB<1, i.e., §<r<1, the leading singular contribu-
tion to P(x)=P(1-x) in Eq. (18) vanishes ax approaches 0
or 1, and P(0) is finite and nonzero. For3>1 or
r<%, P(x) diverges according to E18) asx approaches
0 or 1. Since the divergence is integrabR{x,v) can be
normalized so that

o 1 1
f dvf dx P(x,v) :f dx P(x) =1
—o0 0 0

6 3 3

(20)

Ill. COLLISION RATE AND MOMENTS OF THE
REFLECTED VELOCITY

Unlike the distribution function®(x,v) and P(x) consid-
ered thus far, the equilibrium collision ratedefined by Eq.
(8), does indeed change nonanalyticallyrgsasses through
r.. According to the asymptotic formd@4)—(16) of P(0,v),
the second integral on the right of E@®) converges at the
upper limit for all 0<r <1 and at the lower limit fol3<2
but not 8=2. Thus the boundary collision rate is finite for
r>r. and infinite forr <r., in agreement with the prediction
of CSB[1]. o

The momentsv|9 of the velocity just after reflection from
the boundary5] exhibit a closely related collapse transition.
SincevP(0,v)dv is the reflected probability current in the
velocity rangev to v+dv,

dv v9*P(0,v)

r>re. (21

Jw dv vP(0,v)

0

The denominator in Eq21) equals the collision ratg just
shown to be finite for >r. and infinite forr<r.. In the
latter case, we use the regularized average

fdv v P(0,0)
im r ,

f dv vP(0,v)
A

lolf=1
A—0

r<re. (22

for all 0<r <1. Note the absence of any special behavior in

Eqgs.(18) and(19) at =2 orr=r,.

The probability densityP(x) is shown for several values
of r above and below, in Fig. 2. The curves were obtained
by integrating Eq(9) overv analytically and then perform-
ing the u integration numerically, using the numerical solu-
tion for P(0,u) in Fig. 1. Again there is no qualitative dif-
ference above and belowy.

From Eqgs.(21), (22), and the asymptotic fornil4), (15) of
P(0,v) for smallv, one sees that all the momentsg? with
g>0 collapse at =r.. Forr >r they are finite and nonzero,
and forr <r they vanish.

CSB[1] analyzed the case of a randomly accelerated par-
ticle, initially at x=0 with v4>0, moving on the half-line
x>0 with inelastic collisions ak=0. Defining Q,(v,v)dv
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as the probability of a velocity just after theh reflection (v = N)vP(0,0)
betweerw andv+dv, normalized so that QuN=——"""", (28)
f dvvP(0,v)
*® A
f dl} Qn(v!UO) = 11 (23) . .
0 and 6(x) denotes the standard step function. Since
J5 dv Q(v,N\)=1, and sinceQ(v,\) vanishes in the limia
they calculated,(v,vo) and the moments — 0 except aby =0+, where it diverges,
R Qequi®) = IMQ(v,\) = dv), r<re. (29
|ogl?= f dv v9Qy(v,v0) (24) Mo
0 The distribution functiorQeq(v) collapses from Eq27) to

o _ _ (29 asr is lowered througlr.. The vanishing of the mo-
exactly. In the limitn— e, the gth moment diverges, inde- ot la=0, g0 for r <r, is consistent with the collapsed
pendent ofr, fo[ gq>;. For 0<q<3, thi*s same quantity form (29).
diverges fo*rr >r ('q) and vanishes f9r<r (q). The critical ThatQqqui(v) in Eq.(27) is indeed a stationary solution of
parameterr (q), given by Eq.(15) with the replacemenB  the recurrence relatiof25) follows directly from the integral
—q+2, delcreases monotonically framto 0 asq increases  equation(12) satisfied byP(0,v). That thes function (29) is
from O to 5. Thus, in both the semi-infinite geometxy>0 3 stationary solution for anymay be shown by substituting

and the finite geometry 9x<1, certain moments of the su-¢), e>0 on the right side of Eq25), integrating over
reflected velocity collapse as decreases. However, since y and then taking the limig— O.

boundary collisions are less frequent in the semi-infinite ge-
ometry, the velocity fluctuations are greater, and the collapse
is less complete. In the semi-infinite case the uncollapsed IV. CLOSING REMARKS
moments are infinite, the moments wig3 do not col-

- N . A. Is there inelastic collapse?
lapse, and for @:q<% the critical parameter (q) is less P

thanr.. The paper of CSB1] on inelastic collapse is almost en-
For a particle confined ta<0< 1 rather tharx>0, the tirely concerned with establishing that on the half-lie 0
recurrence relation that determin®@s(v,v,) is given by (i) the particle makes an infinite sequence of boundary col-

lisions in a finite time for <r;, and(ii) in the limit n— oo

w the reflected velocity distributio®,(v,vg) and certain mo-
rQns1(rv,ve) :J duvG(1,v,u)Q,(u,vp), (25) ments of the reflected velocity collapseras lowered. Our

0 results for a particle in equilibrium on the finite linex<1
are quite compatible witlkii) and (ii). We question only the
statement, below Eq19) of [1], that after undergoing an
infinite sequence of collisions the particlemains at rest on
. . . the boundary
as shown in the Appendix. The kerr®(1,v,u) is the same Unlike the central quantit®,(v,vg) in the work of CSB,

as in Egs.(12) and(13). Due to the propertyA2) (see the ; . .
Appendix of the kernel, the recurrence relation preserves théhe solutionP(x,v) of the Fokker-Planck equatior§)7)

normalization(23). In the limit n—oo, Eq. (25) becomes provides information on both the position and velocity of the

identical with the integral equatiofl2) for vP(0,v), sug- part|f:|e in equilibrium. The solutiorP(x,v) thaF we have
. . : obtained does not collapse onto the boundaxe® andx
gesting thaQ..(v,vg) is proportional towP(0,v).

Thi Honalit ld h b ticinated. In th =1 asr is lowered between 1 and 0. However, fo<r,,
__ IS proportionaiity cou ave been anticipated. in - eP(O,v) diverges more strongly thasm? in the limit v —0,
limit n—o0, Qu(v,vp) IS expected to approach the equilib- i B .

. o . and this implied =, |v|9=0, >0, andQeq.i(v)=4dv), via
fium - distribution Qequifv), and Qequ(v) proportional 10 o " 55 "214(20) There is a collapse transition in the
vP(0,v) follows from the interpretation afP(0,v)dv as the gs.(8), (22), (29). P

reflected probability current, in equilibrium, in the rangé& Q|str|but|on Qf rgflected veIocr_ueQequ“(u), but it dpes not
v+dv. involve localization of the particle at the boundaries.

The proportionality constant is fixed by the normalization Why iS Qequif(v) =) ot a sufficient condition for in-

(23). This leads to elastic collapse? Since the velocity-0 on reflection from
' the boundary is overwhelmingly favored, does not the par-
ticle remain at the boundary? In our opinion, the relevant

Qo(v,vg) = 8(v —vy), (26)

Qequilv) = M r>re. (27)  quantity in the question of localization is NQtq(v) but the
j dv vP(0.0) probability per unit timeyP(0,v)dv for leaving the boundary
0 ’ with a velocity betweew andv +dv, where
UP(OIU) = IQequiI(U)y (30)

For r<r., the denominator in Eq(27), which equals the
collision ratel, diverges. Regularizing as in EqR2), we  asin Eqs(27) and(28). If vP(0,v) >0 for v >0, the particle
replace the right side of E@27) by lim,_,oQ(v,\), where does not remain at the boundary.
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Forr<r, the collision ratd is infinite, and forv >0 the  remain at the boundanQ(xq,vo,t) in Eq. (32) should be
productlQeq,i(v)=148(v) on the right side of Eq¢30) is in- interpreted as the probability that after a tine randomly
determinate. Whether or netP(0,v) vanishes forv>0 is  accelerated particle has not yet made an infinite number of
unclear from Eq(30). We have calculate@®(0,v) for r<r.  boundary collisions. The derivations of E@2) in [10,1]]
by solving the Fokker-Planck equation. The result, as deare compatible with this interpretation, and it is also sup-
scribed above, is a smooth functionwofvith the asymptotic ~ ported by simulation$3,12,13.
forms (14)—«16). The quantitypP(0,v) does not vanish for
v>0, although it does indeed impiQqqi(v)=d(v). Thus, ACKNOWLEDGMENTS
we find that inelastic collisions do not localize the particle at
the boundaries.

Below we comment on two earlier results in view of these

We thank Jerrold Franklin for numerical calculations of
the curves in Figs. 1 and 2 and for many stimulating discus-
sions. T.W.B. also gratefully acknowledges discussions and

conclusions, correspondence with Lucian Anton and Alan Bray.
B. Collision rate in simulations APPENDIX A: VELOCITY DISTRIBUTION ON ARRIVAL
In computer simulation§2—4] with a discrete time step AT THE BOUNDARY

At, the boundary collision rate which can never exceed one . . .
collision per time step, is necessarily finite. In the algorithm. The probability that a randomly accelerated particle with

of [3,4], the root-mean-square velocity change is given b))nitial. positionx:(_) and ?nitial velocityu>0, moving on '_[he
Av=(2A0)2. In the limit At—0, the discrete dynamics ap- ha/-inex=0, arrives with speed betweerandu +dv on its
proaches the continuum dynamics of E), and| diverges 'St retum tox=0'is given byvGo(v, u)dv, where
for r<r.. Anton [3] has found that the collision rate in his 3 L
simulations scales ds- (At)2 2. At—0 for r <r, and of- Gol(v,u) = —— : (A1)
fered a dynamical explanation. We note that this scaling re-
lation follows very simply from our results for the equilib- This result, due to McKeaf8], was also obtained indepen-
rium distribution functionP(x,v). For velocities|v|<Av,  dently by CSB[1].
the simulation results are expected to deviate from the The quantityG(1,v,u) in Eq. (13), derived by BFG[4],
asymptotic formP(0,v) ~v™#") in Egs.(14) and(15). Thus  extends this result to the finite intervakix<1. The prob-
the boundary collision raté8) in the simulations scales as ability that a randomly accelerated particle which leaxes
. =0 with velocity u>0 has speed betweenandv+dv the
- 1-8 2-B (2-p)I2 next time it reaches either boundary is given by
! Lv dv v (4v) 4y , At=0. vG(1,v,u)dv, where the first and second terms on the right
side of EQ.(13) correspond to arrival at=0 andx=1, re-
spectively. LikeGy(v,u) in Eq. (A1), G(1,v,u) satisfies the
normalization condition
C. Persistence exponent for <r. fx

(31)

Burkhardt[10] and De Smedet al. [11] have considered dv vG(1,0,u)=1. (A2)

the probabilityQ(xy,vg,t) that a randomly accelerated par-
ticle with initial position and velocity,v,, confined to the Integral equation12) for P(0,v) follows directly from
half-line x>0 and reflected inelastically at=0, has not yet the interpretation oiG(1,v,u) in the preceding paragraph
undergone inelastic collapsafter a timet. They predicted and the stationarity, in equilibrium, of the reflected current
Q(X,v0,t)=1 forr>r, and forr <r the power-law decay yP(0,v)dv betweerny andv +dv. Another consequence is the
. 2-8)/2 recurrence relation(25) for the probability distribution

Qxgug;t) ~ t#H2, t— o, (32 Q,(v,vo) of the spee(d ?/)vith which tﬁe particlz rebounds after
where the exponens is the same as in Egél4), (15), and  the nth boundary collision. Solving Eq$25) and (26) with
(31). In view of our conclusions that the particle makes anGy(v,u) in Eqg. (Al) in place of G(1,v,u), CSB[1] calcu-
infinite number of collisions in a finite time but does not lated Q,(v,vy) exactly for motion on the half-line>0.
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